以QPQ工艺为标志的盐浴氮化复合技术,其流程精密且环环相扣。第一阶段为预热,将清洗后的工件在350℃左右的空气中预热,目的是烘干水分,避免投入氮化盐浴时引起盐液溅射,同时减少工件与盐浴的温差,从而更大限度地降低热变形。第二阶段是中心的盐浴氮化,工件在570±10℃的氰酸根盐浴中浸煮一定时间,活性氮原子渗入表面形成高耐磨的化合物层和扩散层。第三阶段为盐浴氧化,将氮化后的工件立即转入另一约400℃的氧化盐浴中,表面被转化为非常耐腐蚀的Fe₃O₄氧化膜(发黑处理),此过程还能将氮化过程中产生的微量氰根(CN-)无害化处理。有时在氧化后还会增加一道机械抛光工序,以去除表面疏松层,获得更光洁的表面,然后再进行一次短暂的氧化,即之后的“Quench”,以封闭抛光痕迹,获得完美的成品表面。认识QPQ氮化,发现金属处理新方向。河北汽车零部件氮化
成功的氮化处理会在工件表面形成两个特性鲜明的区域。与空气接触的外层是硬度很高的化合物层(白亮层),主要由ε-Fe₂₋₃N和γ'-Fe₄N组成,提供了良好的耐磨性和抗咬合性。其下方是扩散层,这是氮原子溶入铁素体晶格并与合金元素形成细小、弥散分布的氮化物的区域,它有效提高了工件的疲劳强度和硬度。化合物层的厚度和相组成可以通过工艺参数精确控制,以满足不同工况需求。例如,通过后续氧化处理封堵疏松孔洞,能进一步提升耐腐蚀性能。什么是氮化厂家电话金属的抗疲劳性能因QPQ氮化而提高。
针对重型机械、能源装备及大型结构件的特殊需求,赛飞斯依托先进的大型盐浴氮化设备和专业的大工件工艺技术,积累了丰富的市场服务经验。公司配备多台大型井式氮化炉,可处理长达数米、重达数吨的大型轴类零件、矿山机械关键部件及风电设备结构件。面对大工件在热处理中易出现的变形控制难、渗层均匀性差等行业共性挑战,赛飞斯通过开发专属的装卡工装、优化加热流程、实施多区控温与变形仿真分析等手段,明显提升了大尺寸零件氮化处理的均匀性与一致性,有效控制了热处理的变形风险,避免了后续矫直带来的附加成本与性能损伤。某能源设备企业的大型传动轴经赛飞斯处理后,产品表面硬度、渗层深度等指标完全合格,整体变形量较行业平均水平降低50%以上,实现了直接装配使用,极大缩短了制造周期,提升了主机的运行可靠性。
通过金相分析可以清晰地观察到,经过盐浴QPQ技术处理的工件,其截面从外至内分为三个典型区域:外层是极薄的致密氧化膜(约1-3μm),主要负责耐腐蚀和减摩;中间是氮化形成的化合物白亮层(约15-25μm),主要为ε相氮化物,是超高硬度和耐磨性的主要来源;向内则为氮的扩散层(深度可达0.3-0.5mm以上),氮固溶于基体中,起到了固溶强化的作用,并能显著提高零件的疲劳强度。这三层结构协同工作,构成了一个完美的防护体系:坚硬的化合物层抵抗磨损,韧性的扩散层提供支撑以防压溃,外表的氧化膜则防御腐蚀。这种梯度功能材料的结构设计,是QPQ技术性能优越的根本原因。QPQ氮化有助于提高产品质量。
由于不锈钢表面有一层致密的铬氧化膜(钝化膜),它会阻碍氮原子的渗入,因此传统氮化工艺难以处理。然而,通过离子氮化技术可以有效解决这一难题。等离子轰击能有效去除这层钝化膜,并使表面活化,从而顺利进行氮化。经氮化处理后,不锈钢的表面硬度可以从原有的200-300HV提升至1000HV以上,耐磨性得到大幅改善,同时仍保留了基体良好的耐腐蚀性。此技术同样适用于钛合金、镍基合金等特殊材料,为航空航天和医疗器械领域提供了有效的表面强化解决方案。借助QPQ氮化,实现金属性能的升级。四川汽车零部件氮化
认识QPQ氮化技术,提升金属处理水平。河北汽车零部件氮化
通过盐浴氮化及QPQ技术处理的金属零件,其明显的性能提升莫过于超凡的耐磨性。在570℃左右的熔盐环境中,活性氮原子持续而均匀地渗入工件表层,与铁及合金元素形成致密的ε相氮化物层。该化合物层的显微硬度极高,可达HV600-1200(约HRC55-72),远高于常规淬火或调质硬度。这层超硬表面能有效抵抗磨粒磨损、粘着磨损和疲劳磨损。例如,在连续工作的齿轮泵中,主轴与衬套在经过QPQ处理后,其耐磨损寿命相比常规热处理件可提高5-10倍,极大地减少了因磨损导致的效率下降和设备故障停机时间。这种耐磨性提升不仅源于高硬度,还得益于表面良好的润滑保持性,降低了摩擦系数。河北汽车零部件氮化
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。